Low dimensional manifold model in hyperspectral image reconstruction
نویسندگان
چکیده
We present the application of a low dimensional manifold model (LDMM) on hyperspectral image (HSI) reconstruction. An important property of hyperspectral images is that the patch manifold, which is sampled by the three-dimensional blocks in the data cube, is generally of a low dimensional nature. This is a generalization of low-rank models in that hyperspectral images with nonlinear mixing terms can also fit in this framework. The point integral method (PIM) is used to solve a Laplace-Beltrami equation over a point cloud sampling the patch manifold in LDMM. Both numerical simulations and theoretical analysis show that the sample points constraint is correctly enforced by PIM. The framework is demonstrated by experiments on the reconstruction of both linear and nonlinear mixed hyperspectral images with a significant number of missing voxels and several entirely missing spectral bands.
منابع مشابه
Applying ISOMAP to the Learning of Hyperspectral Image
In this paper, we present the application of a non-linear dimensionality reduction technique for the learning and probabilistic classification of hyperspectral image. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. It gives much greater information content per pixel on the image than a normal colour image. This should gre...
متن کاملCT Image Reconstruction in a Low Dimensional Manifold
Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionali...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملAn Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data
The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...
متن کاملSeparation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image
The application of anomaly detection has been given a special place among the different processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1605.05652 شماره
صفحات -
تاریخ انتشار 2016